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1. INTRODUCTION
The interaction of electromagnetic radiation with matter is of fundamental  importance in basic and

applied science.  Ask any scientist about this subject and it is likely that he/she will tell you that this is
'spectroscopy' and will go on to explain how quantised vibrations, quantised rotational and electronic
transitions for atoms, molecules or whole materials give rise to IR and UV/visible absorption and emission
spectra.  If it is pointed out that such spectra are observed for frequencies greater than ~ 3 x 1011 Hz, so what
happens in the remaining frequency range 1011 Hz down to 10-6 Hz ?, a blank response is often obtained or
some may mention the microwave spectroscopy of gases where pure quantised rotational or inversion spectra
(eg as for ammonia) may be observed.  I make this point to emphasize that it is not generally appreciated that
spectroscopic dispersion of dielectric permittivity (and hence refractive index) and associated energy
absorption regions may be observed for a material over the entire range from 1011 Hz to 10-6 Hz due to
classical electric polarization and electrical conduction processes.  The magnitude of the effects and the
frequency location of the energy absorption features associated with these processes will depend markedly upon
the chemical and physical nature of a material and the temperature and pressure at which it is studied.  Studies
of electric polarization and conduction processes are made under the titles 'Dielectric Relaxation Spectroscopy'
(DRS), 'Impedance Spectroscopy' (IS), 'Electrical Impedance Spectroscopy' (EIS) or 'Electrical Relaxation
Spectroscopy' (ERS).  This diversity of description is historical and arose because studies were made for
different reasons with different classes of materials, usually by scientists from different backgrounds e.g. in
physical chemistry, condensed-matter physics, electronic physics, materials science, polymer science, solid-
state physics etc..  For example, many use DRS as an investigative tool for the study of molecular motions of
dipolar molecules in liquids and solids.  The variation of complex dielectric permittivity with frequency will,
as we shall see below, give information on the natural rotational diffusional motions of dipolar molecules in a
material in the absence of an applied electric field.  Others use DRS, EIS, IS, ERS to study hopping conduction
of charged species in polar solids and semi conductors.  The whole subject of electrical conduction and
photoinduced-conduction in solids is included under these headings so the subject is wide-ranging.  The
variation of electrical conductivity with measuring frequency may, as we shall see below, give information on
the natural translational diffusional motions of ions in a material in the absence of an applied field.

The electrical/dielectric properties of materials, as determined by DRS, IS, EIS, ERS, may be expressed
in different ways, and this has led to some confusion and to different ways of interpreting the same basic data.
Rather than being regarded as one subject, namely, 'the frequency-dependent electrical/dielectric properties of
materials', DRS, IS, EIS and ERS studies of different classes of materials have developed along parallel lines
with limited overlap, even though they use the same measurement techniques and instrumentation.  In this
article, we give an introductory account of selected topics that are essential to an understanding and
application of the electrical/dieletric studies of materials.   The account is intended to aid a person entering the
field in understanding the different quantities that are measured experimentally, how they are inter-related and
how, in model cases, they may be related to molecular processes involving the rotational motions of dipolar
species and the translational motions of charged species.  Appropriate references are given where more



detailed accounts of the macroscopic and molecular theories of electric polarization and conduction will be
found.

Studies of the electrical/dielectric (E/D say) properties of materials, reported as DRS, IS, EIS and ERS
data, have been made increasingly over the past ten years.  For DRS studies, the experimental quantity is the
complex dielectric permittivity  ε(ω) defined as

ε(ω) = ε'(ω) - iε''(ω)     (1)

where ω = 2πf/Hz, ε' is the real permittivity and ε'' is the dielectric loss factor.  For liquids and solids
containing molecular dipoles that have rotational freedom ε(ω) may be related to <µ2> , the mean squared

dipole moment per molecule, and to the Fourier transform of a time-correlation function Φµ(t) for the
reorientational motions of the dipoles, as will be explained below.   Thus, DRS provides a means of
determining the average rate of molecular tumbling motions in different materials (eg dipolar liquids, rotator-
phase molecular crystals, amorphous, crystalline and liquid-crystalline solid polymers).  Such DRS studies are
complementary to those using nuclear magnetic resonance (NMR) relaxation, dynamic mechanical thermal
analysis (DMTA), quasi-elastic light scattering (QELS), quasi-elastic neutron scattering (QENS) and transient
fluorescence depolarization techniques.  While those techniques advanced markedly from the 1950s to the
1990s in terms of (i) instrumentation (ii) underlying theory and (iii) applications to different materials, the
older technique of DRS made slower progress due to the difficulty of making accurate measurements quickly
and efficiently over such a large f-range (10-6 to 1011 Hz).  During the past ten years or so, the situation has
changed remarkably with the advent of modern dielectric spectrometers that are able, individually, to cover
wide bands within the overall range.  Thus, for example, Novocontrol spectrometers are available for the
ranges 10-6  to 107 Hz, 106 - 109 Hz and to higher frequencies in the microwave range.  These spectrometers
are able to make accurate DRS measurements of ε(ω) and hence related electrical/dielectric quantities (see
below) of materials in an automatic, pre-programmed manner, quickly and efficiently.  In addition, these data
may be fitted to empirical and molecular relaxation/correlation time-functions or frequency functions using
specialised software, thus allowing DRS spectra to be characterised over a very wide f-range.  The same
conclusion applies to IS, EIS and ERS studies that use the same instrumentation but present the
electrical/dielectric properties in terms of complex electrical impedance Z(ω), complex electrical admittance
Y(ω), complex electric modulus M(ω) or complex electrical conductivity σ(ω).

Before we describe details of the theory underpinning DRS, IS, EIS and ERS studies it is worth noting
that the electrical/dielectric behaviour of materials pervades modern science and technology as illustrated by:-
• dielectric relaxation of organic materials including polymers
• electronic conduction of inorganic and organic materials, including semiconductors
• electrical conduction, by ion-motions, of conventional electrolytes, polyelectrolytes and novel electrolytes,

including salt/polymer complexes
• electrical insulation in cables and capacitors using polymers (eg polyethylene, polypropylene, polystyrene,

polytetrafluoroethylene, polyvinyl chloride)
• piezoelectric, pyroelectric and ferroelectric behaviour of inorganic materials (eg barium titanate) and

organic materials (eg polyvinylidene difluoride)
• UHF and microwave dielectric heating of materials, used for domestic cooking, industrial food processing

and microwave dielectric heating of reaction mixtures.

2. DIELECTRIC AND RELATED ELECTRICAL STUDIES

2.1. Literature
DRS is a mature subject in terms of experimental techniques, the theory of electric polarization and

conduction phenomena in organic and inorganic liquids and solids and the experimental data for such
materials.  Key references to the subject are as follows:-
• Experimental techniques, theory and experimental results for low molar mass materials - the texts of

Smyth [1], Hill, Vaughan, Price and Davies [2], Bordewijk and Böttcher [3].
• Experimental techniques, theory and experimental results for polymer materials - the texts of McCrum,

Read and Williams [4], Blythe [5] and, very recently the text edited by Runt and Fitzgerald [6].
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• Experimental techniques, theory and experimental results for ionic crystals - the text by Nowick and Berry
[7] and the reviews by West [8-10], and for glass-forming materials, including molten salts, - the text by
Wong and Angell [11] and the key papers by Moynihan and coworkers [12-15].  Note: ref. 13 and 15
contain key references to the electrical conduction behaviour of ionic materials.

Pochan, Fitzgerald and Williams [16] have reviewed the experimental techniques used for the DRS of
polymers, while the original texts of Von Hippel [17, 18] remain the classic accounts of the phenomenological
theory of electric polarization and conduction processes and the early applications of dielectric materials.  The
dielectric properties of materials, especially polymers, including experiment and theory, have been the subject
of a series of updated reviews by the author [19-29].

In the majority of  DRS studies of materials, molecular relaxation processes, due to the motion of dipole
groups as whole molecules or as chain segments in polymer molecules, are observed as multiple dielectric loss
peaks in plots of ε''(ω) -vs-log(f/Hz).  In addition, at low frequencies an increasing loss with decreasing
frequency is observed due to charge-conduction and electrode polarization in a material, giving information on
the apparent translational diffusion coefficient of the mobile charges (ions or electrons), as we shall see below.
The questions arise - (i) what presentational forms should electrical/dielectric properties take and (ii) how may
they be interpreted using phenomenological theories and using molecular theories for the rotational and
translational motions of molecular species?  These questions will be addressed below.
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Figure 1.  Model equivalent electrical circuits for relaxation and conduction as described in the text.

2.2. Extensive Experimental Quantities
For frequencies below 108 Hz, it is convenient to use equivalent electrical circuits made up of resistors,

capacitors and, where appropriate, inductors to represent the electrical/dielectric (E/D) properties of a material.
This 'lumped circuit' representation has been widely-used, especially in the IS and IRS studies of ionic
materials [8-10].  The measuring instrument (eg an impedance analyzer) will measure a sample in a parallel
plate or coaxial dielectric cell as either

(a)  a resistor Rs in series with a capacitor Cs (fig. 1(a))

3



or

(b) a resistor Rp in parallel with a capacitor Cp  (fig. 1(b)).

For a.c. measurements these electrical circuits can be forced to be equivalent, giving the following
equations for the electrical admittance Y(ω) and the electrical impedance Z(ω)

Y(ω) = 1

Ζ ( )ω
 = Gp(ω) + iω Cp(ω) = 1

1R i Cs s( ) / ( )ω ω ω+
     (2)

where the parallel conductance Gp(ω) = Rp(ω)-1 and, in general, Gp, Cp, Rs and Cs vary with frequency f = ω
/2π for a material.  The following relations are obtained from eqn. (2).

Cs(ω) = Cp(ω) [1 + D2] ;  Gp(ω) = 1
Rp ( )ω

 = D
R Ds

2

21( )+
      (3a, 3b)

D(ω) = ωRs(ω) Cs(ω) = [ωRp(ω)Cp(ω)]-1      (3c)

Where Dp(ω) is known as the dissipation factor.

If a real material is thought to correspond to a particular equivalent electrical circuit then the resistor and
capacitor elements defined in that circuit should be independent of frequency.  For example, a dielectric
material having no relaxation behaviour but possessing a steady dc conductance due to ion-motions should be
regarded as a capacitance Cp in parallel with a conductance Rp (see fig. 1(b)), whose values are independent of
frequency in eqn. (2) above.  In consequence, the forced-equivalent circuit of Rs (ω) in series with Cs(ω) (see

eqn. (2)) gives Rs(ω and Cs(ω) as f-dependent quantities whose values are obtainable in using [Rp,  Cp] in
eqns. (3) and (4) above.  It is important to emphasize that the forced equivalence in eqns. (2) for series and
parallel circuits applies only to a.c. measurements and does not extend to measurements made in the time-
domain as the step-on and step-off response (charge or current) to an applied voltage V.  The series circuit [Rs,
Cs], fig. 1(a) where Rs and Cs are constant, acts as a 'relaxing' element with step-on and step-off responses for
the transient current I(t) following the step-application and withdrawal of a voltage V being given,
respectively, by

Ion(t) = (V/Rs)[1 - exp (-t/τRC)]      (4a)

Ioff(t) = (V/Rs).exp (-t/τRC )      (4b)

where τRC  = RsCs.  In the step-on experiment for t → ∞ the capacitor is charged but the circuit does not
draw a current.  The parallel circuit [Rp, Cp], where Rp and Cp are constant, acts as a 'dissipating' element at
all times for a step-on voltage since for the the capacitor charges as a δ−function with time and the resistor
draws a steady current Ion (t) = (V/Rp).  It should be evident from this that the forced equivalence of series and
parallel circuits (eqn. (2)) for a.c. experiments does not apply to d.c. step-function experiments.  A further
point to emphasize is that it may be fundamentally incorrect to represent a dielectric material in terms of an
equivalent circuit of resistors and capacitors having f-independent values.  For example, for a material in
which, under step-on dc-voltage conditions, charged species migrate but are not electrically-neutralized at the
electrodes then a blocking capacitative layer builds up with time at the electrodes.  At long times the charging
current Ion(t) will cease to flow and the material stores energy in the capacitor plus blocking layer as if it were
a polarized material in the presence of the steady voltage.  Since the blocking layer did not exist in the absence
of the voltage it seems inappropriate to represent the system as a lumped circuit having a series arrangement of
sample capacitance and a blocking layer capacitance. If a mathematical model can be given for the
establishment of the blocking layer with time then Ion(t) may be calculated without recourse to equivalent
lumped circuits.  Note also that for this example removal of the steady voltage will not necessarily lead to a
decay of Ioff (t) with time that mirrors Ion(t), so linear response is not obtained, generally, and Fourier
transformation of Ioff(t) to give predictions of the a.c. behaviour of the circuit is not possible.  Such
considerations are usually not made, and the effects of electrode polarization need further theoretical modelling
at this time.
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To conclude this Section, we note that a dielectric material can be measured at frequencies below ~106

Hz as [Rs, Cs] or [Rp, Cp] equivalent circuits where these components are, in general, frequency-dependent.

2.3. Intensive Experimental Quantities

The measured values of Y(ω) = Z(ω)-1 will depend on the geometry of a sample (sample area A and
thickness d for a parallel-plate cell) so it is necessary to express the electrical/dielectric (E/D) properties of a
material in terms of intensive quantities, which are:- dielectric permittivity relative to vacuum ε(ω), electrical

modulus M(ω) = ε(ω)-1 and electrical conductivity σ(ω).  If the empty dielectric cell has a geometrical

capacitance given by Co = Aεv/d, where εv is the permittivity of free space, then

ε(ω) = 
Y

i Co

( )ω
ω

 = 
1

i C Zoω ω( )
      (5a)

M(ω) =
i C

Y

oω

ω( )
 = iωCoZ(ω)      (5b)

where ε(ω) = ε'(ω) - i ε''(ω) and M(ω) = M'(ω) = i M''(ω).

The inter-relationships between ε, M and σ  are expressed as follows:

ε(ω) = 1

M i v( )

( )

ω
σ ω
ωε

=       (6)

where σ(ω) = σ'(ω) + i σ''(ω).  From eqns. (5) and (6) we see that the same E/D data may be presented as the

extensive quantities Y(ω) or Z(ω) or as the intensive quantities ε(ω), M(ω) or σ(ω).  In practice,
experimental data for materials are frequently presented in any one of these five different representations.
Data from DRS studies of materials are usually presented as ε(ω) [1-4] and sometimes as M (ω) and Z(ω).  IS,

EIS and ERS data for materials are usually presented as Z(ω) or M(ω) and occasionally as both [8-10, 12-16].
The particular presentation is chosen to emphasize the process under investigation.  Thus, for DRS studies of
molecular motions of dipolar molecules in the liquid and solid states ε(ω) is chosen and exhibits dispersion of

ε'(ω) with increasing frequency accompanied by a loss peak for ε''(ω).  We shall see below that this is a

particularly useful representation since inverse Fourier transformation of ε''(ω) gives information on the time-
correlation function (TCF) for the motions of the dipoles.  For IS, EIS, ERS studies of ionically-conducting
materials (eg molten salts), M(ω) is often chosen and is found to exhibit dispersion of M'(ω) and a loss peak

for M''(ω).  It will become apparent that it is not obvious how M(ω) may be related to TCF for the

translational motions of the charged species and that σ(ω) would be the preferred quantity to represent the
behaviour of conducting materials.

In recent years there had been a marked increase in the number of DRS, IS, ERS studies of polarization
and conducting processes in glass-forming liquids, ionic liquids, polymers (amorphous, crystalline, liquid-
crystalline), ionic crystals, liquid crystals, and chemically-reacting systems (eg epoxide-amine polymerizing
systems). An excellent source of experimental data together with their theoretical interpretations is to be found
in the published records of the Crete and Alicante Conferences organised by Ngai, Wright, Riande, Bello and
their associates [30, 31].  The numerous papers in those published volumes show how Z(ω), ε(ω), M(ω) and

σ(ω) are all used to present E/D data for such materials.

3. MODEL LUMPED CIRCUITS
We consider simple equivalent circuits for samples that exhibit dielectric relaxation and electrical

conduction and obtain relations for different E/D quantities.
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Figure 2.  Plots of real permittivity ε' and loss permittivity ε'' -vs- log ωτε for a sample

represented as the equivalent circuit fig. 1(c) with chosen values of ε0 and ε∞.

3.1. Relaxation
Consider a parallel-plate capacitor of area A and plate-separation d to contain a dielectric material that

exhibits relaxation. The equivalent circuit is a series pair [Rs , Cs] in parallel with a capacitance C∞ where all

components have f-independent values (see figure 1(c)).  We write

Y(ω) = iωCo ε(ω) = iωC∞ +
1

R i Cs s− / ω
      (7)

where Co = Aεv/d  is the geometric inter-electrode capacitance of the cell and εv is the permittivity of a

vacuum.  Writing ε∞ = C∞/Co and τRC = RsCs, we obtain

ε (ω) = ε∞ + ε ε
ωτ

o

RCi

−
+

∞

1
      (8)

where εo - ε∞ = Cs/Co.   Eqn. (8) shows that the circuit exhibits relaxation behaviour as follows: From eqn. (8)

we write

ε'(ω) = ε∞  + ( )ε ε
ω τ

o oo

RC

−
+1 2 2

 ε''(ω) = ( )ε ε ωτ
ω τ

o RC

RC

−
+

∞

1 2 2
      (9a, 9b)

Fig. 2 shows plots of ε'(ω) and ε''(ω) -vs- log ωτε for εo and ε∞ values chosen arbitrarily as 13 and 3

respectively and for τε = τRC =  1 sec.  ε'(ω) falls with increasing frequency and ε''(ω) shows a peak at

ωm τRC  = 1.  The peak height is (εo - ε∞ )/2 and the 'relaxation strength' is (εo - ε∞ ).  The area below the

plot of ε''  -vs- loge ωτε is given by (εo - ε∞ ) π/2, so the total relaxation strength, as given by this area, is

directly related to the magnitude of the dielectric dispersion εo - ε∞ .  For real dielectric materials the same is

true for a 'single relaxation time process', as we shall discuss below.
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Figure 3.  Plots of the real electrical modulus M' and the loss modulus
M'' -vs- log ωτM as derived from the data of figure 2.

In the mechanical relaxation of solids, materials are often represented in terms of equivalent circuits in
which the basic elements are springs (elastic elements) and 'dash-pots' (dissipative elements).  The relaxation
behaviour is expressed using complex moduli (shear modulus G(ω) for example) or its inverse, known as the

corresponding compliance J(ω), as is described by Ferry [32] and by McCrum, Read and Williams [4].  Thus

mechanical properties can be expressed alternatively as mechanical relaxation G(ω) or retardation

J(ω) = G(ω)
-1

 for a viscoelastic material.  By analogy the modulus representation of electrical properties is

sometimes used in electrical studies [12-15].  For the electrical circuit given in fig. 1(c) it follows that M(ω) is
given by

M (ω) = Μ' (ω) + i Μ'' (ω) = M∞ + 
M M

i
o

m

−
+

∞

1 ωτ
      (10)

where Mo = εo
-1, M∞ = ε∞

-1, and τΜ  = (ε∞/εo)τε .  It follows from eqn. (10) that M' rises from εo
-1 = Mo to

ε∞
-1 = M∞ with increasing frequency and M'' gives a bell shaped curve that peaks at ωm'τΜ = 1, as shown in

fig. 3.  Thus changing the presentation of data from ε  to M  shifts the absorption peak to higher frequencies

(since τM < τε).  Finally, we note for the conductivity representation that

σ(ω) = iω ε(ω) = σ'(ω) + i σ''(ω) =

( )ε ε ω τ
ω τ

ω ε
ε ε

ω τ
o RC

RC

o

RC
i

−
+

+ +
−

+






∞
∞

∞
2

2 2 21 1
      (11)

So σ' (ω) increases with increasing frequency to a limiting value (εo - ε∞)/τRC = (RsCo)
-1

 and σ'' (ω)

shows a peak.  There is no advantage in representing the E/D behaviour of this equivalent circuit as σ(ω). We
see that different representations of the E/D behaviour of this simple electrical circuit give very different
'fingerprint' spectra in the f-domain.  The preferred representation in this case is as ε(ω) which gives the

relaxation parameters εo, ε∞ and τRC in a simple, direct manner (see eqns. (8) and (9) and fig. 2).
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Figure 4.  Schematic plots of real impedance Z' and imaginary impedance Z''
-vs- log ω for a sample represented as the equivalent circuit fig. 1(d).
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Figure 5.  The Argand diagram for the impedance behaviour shown in fig. 4.

3.2. Conduction
Consider a parallel-plate capacitor of area A and plate-separation d to contain a dielectric material that

exhibits conduction due to charged species.  A suitable equivalent circuit is a parallel pair [Rp, Cp] in parallel
with a further capacitor C∞ where all components have f-independent values (see fig. 1(d)).  We write
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Z(ω) = (Gp+ iω C'
p)-1 = 

R

i
p

RC1+ ωτ '
      (12)

where C'
p = Cp+ C∞ and τ'RC = Rp C'p

Fig. 4 shows plots of Z'(ω) and Z"(ω) -vs- logω, where Z' is seen to exhibit a dispersion, falling from
Z(0) = Rp to zero while Z" exhibits a peak at ωm τRp C'p = 1 with Z"max = Rp/2.  The Argand diagram is a
semi-circle as shown in Fig. 5.

logω

ε0

ε''

ε'

Figure 6.  Schematic plots of ε' and ε'' -vs- log ω for a sample represented as the equivalent circuit fig. 1(d).

The expression for ε(ω) for the parallel [Rp, C'p] circuit is

ε(ω) = ε'(ω) - i ε"(ω) = εo - i[ωRp Co]-1      (13)

where ε0  = C'p/C0 .  So ε' is independent of frequency and ε'' decreases monotonically with increasing
frequency as shown in fig. 6.  The frequency-independent specific conductivity is given by σo = εv(Rp Co)-1.
Similarly σ(ω) is written as

σ (ω) = σ'(ω) + iσ''(ω) = σo + iωεoεv      (14)

So, σ'(ω) is independent of frequency and σ''(ω) increases with increasing frequency, as shown in fig. 7.
Finally, M(ω) is given by

M(ω) = M∞ 
i

i
M

M

ωτ
ωτ1+

      (15)

where M∞ =  (C0/C'p ) = 1/ε0 = 1/ε∞ in this case.  So, as in fig. 3, M' increases from zero to M∞ = 1/ε∞ with

increasing frequency and M" shows a peak at ωmτM = 1 with M"max = M∞/2.  Therefore, M" follows the

single relaxation time expression giving a value for τM = Rp C'p.
Although the parallel [Rp, C'p] circuit does not exhibit a relaxation response in the time-domain to a step-

applied field  (the capacitor charges as a δ−response and the resistor passes a steady current) the ac behaviour
expressed as Z(ω) or M(ω) appears to exhibit relaxation behaviour, as we have seen in figs. 3-5.
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Figure 7.  Schematic plots of real conductivity σ' and imaginary conductivity σ'' -vs-
log ω for a sample represented as the equivalent circuit fig. 1(d).
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Figure 8.  Schematic plots of ε' and ε'' -vs- log ω for a sample represented as the equivalent
circuit fig. 1(e), thus exhibiting relaxation and conduction behaviour.

3.3. Relaxation and Conduction
For a material that exhibits relaxation and conduction, one approach is to combine the equivalent circuits

shown in figs. 1(a) and 1(d) as shown in fig. 1(e) where Cp  has been replaced by [Rs, Cs].  We may write

ε(ω) = ε∞ + ε ε
ωτ

o oo

RCi

−
+1

 - i
C Ro pω

      (16)
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where (εo - ε∞) = (Cs/C∞) and τRC  = RsCs .

In fig. 8, we show the resultant plots of ε'(ω) and ε''(ω) -vs- log ω.  Dielectric relaxation is observed as in
fig. 2, while the conduction process appears as an increasing loss to low frequencies, yielding a value for
CoRp = εvσ0

-1.  If the form of presentation is changed to M(ω) we have a complicated equation for M(ω),
depending upon the values for the components, which can yield two apparent relaxation regions, the lower
frequency region being associated with a conduction process and the higher frequency region being associated
with the relaxation process.  The effect of conductivity may be highly suppressed when the data of fig. 8 are
presented as [M', M"] as shown in fig. 9.  The dispersion and absorption feature due to conduction is seen as a
small feature at low frequencies (see also fig. 3).  Data for this model circuit, fig. 1(e), presented as σ(ω) show
that σ'(ω) at low frequencies is independent of frequency at the value σo = εv(RpCo)-1 while σ"(ω) first

increases then decreases with increasing frequency.  Data presented as Z(ω) will emphasize the conduction
process, and will give, in practice, curves of the form of figs. 4 and 5 with the relaxation process [Rs, Cs]
normally being a small feature at frequencies higher than that for the peak in Z".
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Figure 9.  Schematic plots of  M' and M'' -vs- log ω  for a sample represented as
the equivalent circuit fig. 1(e), as derived from the data of fig. 8.

3.4. Summary of Model Circuits
In practice, various electrical equivalent circuits have been proposed for materials, but those described

above are the simple building blocks that account for relaxation and conduction.  An important additional
feature for real materials is the blocking layer capacitance that may be present between the sample and the
electrodes.  This may be a permanent feature of a circuit, to be represented in the f-domain as a [Rs, Cs] or [Rp,
Cp] element in series with the sample-circuit or may be a layer created by electrochemistry at the electrode-
sample interface following application of a voltage which, as noted above, is difficult to represent using
equivalent circuits whose elements have f-independent values.

In practice, it is common to represent electrode-polarization or electrode-blocking effects as a Warburg
impedance that corresponds to an assembly of resistors and capacitors arranged as a fractal array [33,34].  The
complex impedance takes the form

Z(ω) ~ ω-β      (17)
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where the exponent β lies between 0 and 1 and is not necessarily restricted to a value of  ½.   It should be
apparent from the above that different representations of E/D data, as ε(ω), M(ω), Y(ω), Z(ω) or σ(ω) will
emphasize, very differently, the processes of relaxation and conduction in materials.  The important question
arises - what information can be obtained concerning molecular processes (dipole motions, charge motions)
from these individual representations?  We shall see below that dipole motions are expressed conveniently as
time-correlation functions that, on Fourier transformation, relate to ε(ω).  Charge transport processes are
expressed as time-correlation functions that, on Fourier transformation, relate to σ(ω).

time

time

Φ(t)

q

V

time

q∞

q0

Figure 10.  Schematic plots of charge q(t) and normalised relaxation function Φ(t)
-vs- time for a sample subjected to a step-on and step-off voltage V.

4. Distributed Circuits
For frequencies higher than ~107  Hz  and into the microwave range, lumped circuits are replaced by

distributed circuits that describe the propagation of electromagnetic waves (EM waves) through a material.  As
described in the major texts, especially those of Von Hippel [17, 18], the propagation coefficient γ(ω) is written
as

γ(ω) = α(ω) + iβ(ω)     (18)

α(ω) is the attenuation coefficient and β(ω) is the phase factor for the material for f = ω/2π

β(ω) = 2π/λm  =  2πn/λo      (19)

where λm and λo are the wavelength in the sample and in vacuum, respectively, for a given value of ω.  n(ω) is
a real refractive index in the expression for the complex refractive index

n (ω) = n'(ω) + in"(ω) = n(1-ik) = ( )i oλ γ ω
π2

      (20)

We may write
ε'(ω) = n2(1 - α2/β2) ;   ε"(ω) = 2n2α/β      (21 a,b)

where we omit (ω) in α, β for convenience.  Also the absorption index k = α/β.  In IR and UV/visible
spectroscopies data are normally presented as plots of absorption (α) -vs- ω.  It should be understood that this
represents only one part of the behaviour, since n' will show a corresponding dispersion throughout an
absorption region.  The link between DRS, expressed in terms of ε(ω) and quantum spectroscopies, such as IR
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and UV/visible spectroscopies is obvious since they all determine the variations of ε(ω)  or the related n(ω)
with ω through an absorption feature.
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Figure 11.  Plots of (a) ε', (b) ε'' and (c) ε''/ε''max  -vs- log(frequency/Hz) for poly(vinyl acetate) at
different temperatures showing the α-relaxation process and a conductivity tail (ref. 38).

5. PHENOMENOLOGICAL THEORIES OF RELAXATION

5.1. Single Relaxation Time Function and Distributions of Relaxation Times
The response of a linear dielectric material to a series of applied voltages may be written in terms of a

super position of responses, as envisaged by Boltzmann (1874) for the analysis of mechanical creep and stress
relaxation properties of solids [32, 35].  This general approach, which applies to any pattern of applied stress
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(or for DRS, electric fields), is discussed in detail by Ferry [32] and by McCrum, Read and Williams [4].  For
the purposes of this article, we shall be concerned initially with the response to step-on and step-off applied
fields, and how the dielectric relaxation functions relate to ε(ω) or the other intensive E/D quantities.

We have seen in Section 3.1 that a sample regarded as a series [Rs, Cs] circuit exhibits relaxation
according to the single relaxation time (SRT) equation, eqn. (8) above.  In the phenomelogical theory of
relaxation, equivalent circuits are not assumed but a general approach is taken based on the dielectric response
of a material to a step-voltage or more complication patterns of an applied voltage [1-4, 17, 18].

Fig. 10 shows the electric charge q (which is proportional to the induced electric polarization P) in a
material following the step-on and step-off of an applied voltage V.  The instantaneous rise and decay
transients are associated with the displacement of the charge-clouds in the molecules, and this is normally
described as 'electronic polarization' which is a very fast process (t < 10-12 sec).  The delayed response is due
to relaxation arising from reorientation polarization due to dipoles or from interfacial polarization (Maxwell-
Wagner effect)[36].  Subtracting the instantaneous components to both the rise and decay transients we obtain
normalised rise and decay relaxation functions as shown in fig. 10.  For a linear system

Φr(t) = 1 - Φd(t)      (22)

where subscripts r and d refer to rise and decay respectively.  From the superposition relation [4] it follows that
the ac response, expressed as ε(ω) for a material is given by [2-4, 19, 37]

ε(ω) = ε∞ + (εo - ε∞) [1 - iωℑ (Φd(t)]     (23)

where ℑ indicates a one-sided Fourier transform.  ε∞  is the short-time, high frequency permittivity and εo is

the long-time, low frequency permittivity.  Thus DRS measurements made in the time-domain, which
determine Φd(t), are related to DRS measurements made in the f-domain by the transform relation eqn. (23).

For the model-case where Φd(t) is given by a single exponential function

Φd(t) = exp -(t/τ)      (24)

then eqn. (23) yields the result

ε(ω) = ε∞ + ε ε
ωτ

o

i
−

+
∞

1
      (25)

This is the familiar 'single relaxation time' equation, sometimes known as the Debye equation after Nobel
Laureate Peter Debye who first used it to explain dielectric relaxation of dipolar molecules in the liquid and
solid states [1-4].  Eqn. (25) is formally equivalent to eqn. (8) that was derived for a series [Rs, Cs] circuit and
thus gives curves for [ε', ε''] and [M', M'']as in figs. 2 and 3..  The transient current behaviour in step-off and
step-on fields for that model circuit see eqns. (4) is also formally equivalent to the transient response shown in
fig. 10, when it is remembered that the transient current is the first time-derivative of the transient charge.

While the SRT equation, eqn. (25) is the starting point to rationalise dielectric relaxation in polymers,
liquids and liquid crystals etc. it fails to account for the shape of the dispersion and absorption curves in plots
against log f for real materials.  As one example, we show in fig. 11 (a) and (b) data for ε' and ε'' -vs- logf for
the α-relaxation in poly(vinyl acetate) at different temperatures obtained using a Novocontrol dielectric
spectrometer at Swansea[38].  The loss curves are broad and asymmetrical at each temperature of
measurement, with a total half-width of ~ 1.8 units of log10(f/Hz) which is to be compared with 1.14 expected
from the SRT equation.  In order to explain such spectral-line shapes it is usual to represent ε(ω) as a

superposition of single relaxation-time processes having an associated distribution of relaxation times g(log τ)
say.  Hence, eqn. (24) is generalized to read

Φd(t) = ∫ g(logτ).exp -(t/τ) dlogτ      (26)
and hence

( ) ( )ε ω ε
ε ε

τ
ωτ

τ
−

−
= ∫

+
∞

∞o

g

i
d

log
log

1
       (27)
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Different forms for g(logτ) may be used to fit data, as described by Ferry [32] and by McCrum, Read and

Williams [4], or g(log τ) may be determined numerically using data for ε'(ω) or ε''(ω) -vs- log ω using
approximate numerical methods developed originally be Schwarzl and Staverman and their coworkers for
mechanical relaxations in polymers [32].  The modern approach allows the distribution function g(log τ) to be

determined numerically by an inversion of the ε''(ω) data by a procedure due to Provencher [39].  This has
been illustrated recently for dielectric relaxation in polymer materials [40, 41] and a recent example is the
work of Kremer published in the Novocontrol Newsletter [42].

Traditionally, it has been customary to fit plots of ε' and ε'' -vs- log ω using empirical functions
expressed in the f-domain or t-domain.  The most versatile function in the f-domain is that due to Havriliak
and Negami [43] which is an empirical modification of the SRT equation.

( )
( )( )

ε ω ε
ε ε ωτ α β

−
−

=
+

∞

∞o i

1

1
      (28)

0<α≤1: 0<β≤1

For β=1, the HN equation becomes the Cole-Cole equation with one 'spread' parameter α.  For α=1 the
HN equation becomes the Davidson-Cole equation with one spread parameter β.  Eqn. (28) generates broad,

asymmetric curves for ε'' -vs- log ω that are skewed to high frequencies.  The HN function gives a very good
representation of dielectric relaxation data in many polymers, as has been reviewed in great detail in the recent
text of Havriliak and Havriliak [44].
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Figure 12.  The decay of the relaxation function Φ(t/τ) for a single exponential
function (β = 1) and KWW stretched exponential function (for β = 0.5).

An alternative approach to broad relaxation features in the f-domain for materials is to modify Φd(t) without
introducing a distribution of relaxation times.  The stretched exponential function of Kohlrausch and later
Williams and Watts is written as [45, 46]

Φd(t) = exp - (t/τ)β      (29)

15



where 0<β≤1.  Williams and coworkers [21, 45, 46] used this empirical function to fit experimental DRS data

for the α-relaxation in amorphous polymers.  As one example fig. 12 shows the plot of Φd(t) -vs- log time for
the single exponential decay function (β=1) and the KWW function, eqn. (29), for β = 0.5.  The KWW

function falls quickly and then for t/τ >1 decays only slowly, when compared with the single exponential decay

function.  This has the effect of broadening and skewing to high frequencies the curve for ε'' -vs-log ω derived
from eqn. (23) as shown in fig. 13.  Comparison with the normalized loss curves in fig. 11(c) for the α-
relaxation in poly(vinyl acetate) shows that the broad asymmetric loss curves for the polymer are similar in
form to those calculated from the KWW function.  A good fit is obtained for β = 0.56 for poly(vinyl acetate) in
this temperature range.  The KWW function is used widely to fit dielectric data in the t- and f-domains for the
α-relaxation in amorphous polymers [21, 24-26, 45], glass-forming liquids [47-50, 11] and ionic melts [11].
Numerical transforms of the KWW function from the t- to f-domain for the KWW equation  eqn. (29) give
[ε'(ω), ε''(ω)] values using eqn. (23) and these have been tabulated by Koizumi and Kita [51] for β-values in
the range 0.3 to 1.0.  These tables complement the earlier calculations of Williams et al [45, 46] and of
Moynihan et al [see ref. 46 in the paper by Moynihan [15]].  Note that Ngai and co-workers use the KWW
function as a part of their coupling scheme for relaxations in polymers and complex liquids (see ref. 6, p.58 for
refs. to their extensive researches).

-3 -2 -1 0 1 2 3

logω

0

2

4

6

8

10

12

14

ε'
, ε

''

β=1.0
β=0.5

ε0

ε∞

Figure 13.  Schematic plots of ε' and ε'' -vs- log ωτ for a single relaxation time function
(continuous lines) and a KWW stretched exponential function with β = 0.5.

5.2. Temperature Dependence of Relaxation Times

The frequency location of the peak in ε'' -vs- log ω defines an average relaxation time <τ> from ωmax (τ)
= 1 where 2πfmax = ωmax and fmax is the frequency of maximum loss.  As is evident from the data of fig. 11
for the a-relaxation in poly(vinyl acetate) that <τ> values decrease with increasing temperature.  For polymers
and glass-forming liquids, two dielectric relaxation processes are often observed[4, 21, 11, 50], the lower
frequency α-process being associated with the microbrownian motions of molecules or chain segments within
polymer chains while the higher frequency β-process is associated with local motions of whole molecules or
chain-segments or side-group motions (eg for acrylate and methacrylate polymers).  The temperature
dependence of the α-process is usually expressed in terms of the Vogel-Fulcher equation

<τ> = A exp [B/(T-T∞)]      (30)
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so the plot of log <τ> -vs- (T-To)-1  is linear.  Eqn. 30 may be rewritten as the Williams-Landel-Ferry
equation.

ln <τ1>/<τ2> = ( )
( )

C T T

C T T
1 1 2

2 1 2

−
+ −

      (31)

where C1 and C2 are material constants and <τ1> and <τ2> are the values at T1 and T2 respectively.  The β-
process usually conforms to the Arrhenius equation

〈τ〉 = C exp (H/RT)      (32)

where H is an apparent activation energy and R is the gas constant.  In this case, the plot of log (τ) −vs− Τ-1 is
linear, yielding a value for H.  Recently, there has been much discussion of the use of the VF equation and
alternative equations have been proposed (52).

It is usually accepted that eqn. 30 can be derived on the assumption that <τ> is related to a time-averaged
quantity called the 'free volume' [32].  However, that concept is difficult to reconcile with the observation that
constant volume apparent activation energies, Hv  say, are ~ 0.8 of the constant pressure activation energies,
Hp say.  This difficulty has been discussed in some detail [26].

There is a limited literature on the effects of applied pressure on <τ> for polymers [21].  Increase in

pressure leads to a marked increase in <τ> for α-processes, with (∂log<τ>/∂P)T being in the range 1-3 kbar-1.

The effect of pressure on β-processes is smaller with (∂ln<τ>/∂P)T being in the range 0.1 - 0.5 kbar-1.
Overlapping processes are conveniently separated using pressure as a variable, as is illustrated by the splitting
of an αβ process into α and β processes in amorphous polymers [21].

Finally, we note that the Adam-Gibbs equation [53, 35] is often used to express <τ(T)> for the α-
relaxation in polymers and glass-forming liquids [35].

<τ(T)> = E exp ( )
F

TS Tc

      (33)

where E and F are material constants and Sc(T) is the configurational entropy of the material.  As Sc(T)
decreases with decreasing temperature <τ(T)> increases correspondingly.  This equation is used extensively by

Matsuoka [35] for different relaxation phenomena in polymers and has the feature that if Sc → 0 then <τ> →
∞ at a finite temperature - which is to be compared with the behaviour of the VF equation, eqn. (30) for

T → T∞.

6. MOLECULAR THEORIES OF RELAXATION

6.1 The Time-Correlation Function Approach to Dielectric Relaxation.
In the early theories of dielectric relaxation of dipolar liquids and solids, an equation for the rotational

motions of the dipoles was assumed and was solved in the presence of a.c. or step electric fields [1,2].  Such
theories were extremely complicated to elucidate and gave little physical insight into the nature of molecular
motions that give rise to the dielectric behaviour of a material.  A considerable advance was made by Glarum
[54] and by Cole [55] who used the linear response theory of Kubo and others to relate ε(ω) to field-free
molecular time-correlation functions (TCF) for the reorientational motions of the dipolar molecules,
independent of any particular mechanism for the tumbling process.  Their approach for small molecules in
liquids and solids was extended by Cook, Watts and Williams [56] to the case of polymer chains in the liquid
and amorphous solid states. The TCF approach to dielectric relaxation has been reviewed by Williams [19, 21,
23, 25, 26, 28, 37].  Despite the fact that some of these papers are nearly 30 years old, the TCF approach to
dielectric relaxation is still not widely-used, largely due to the non-familiarity of scientists with time-dependent
statistical mechanics.  In order to familiarize the reader, we explain the essential aspects of TCF for dielectric
relaxations in a liquid or amorphous polymer composed of dipolar molecules.
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Figure 14.  Illustration of the randomisation, with time, of a sub-ensemble of dipole vectors in a liquid that all
have the same dipole orientation at t = 0.  As time develops microbrownian motions move the dipoles away
from their initial orientation so the average dipole moment per molecule <µ> taken over the sub-ensemble
decreases steadily from µ(0) to zero with increasing time.  This loss of orientation correlation with time is the

basis of the vector-vector time correlation function Φ(t) for dielectric relaxation in liquids and amorphous
solids (e.g. amorphous polymers).

Consider a macroscopic volume V in a material to contain N molecules each having a dipole moment µ
(a vector quantity) whose direction changes with time due to the natural thermal motions within the material.
At
t = 0 identify all those molecules that have the same orientation, as a subset N1 of N.  Fig. 14 shows these N1
dipoles at t = 0.  As time evolves, molecular motions move the dipole orientations away from µ(0), as indicated

in the figure,  so as t → ∞ they have, on average, no correlation with the original orientation.  The average

projection per molecule at time t on the original direction at time zero is <cosθ(t)> = µ(0).µ(t)>/µ(0).µ(0)

which decreases with increasing time from <cos θ(t)> = 1 at t = 0 down to zero for t→ ∞ .  The dipole

moment TCF is equal to the further average of <cos θ(t)> taken over all initial orientations of the dipole at t =

0, and over all other molecules in the ensemble of N molecules.  In normalized form the TCF is written as Φ
µ(t).  For this case of an amorphous system, since all initial directions of dipoles are equally probable and all
molecules are equivalent it follows that

Φµ(t) = 
( ) ( ) ( ) ( )µ µ

µ
µ µ

µ
0 0

2 2
. .t t

=       (34)

According to linear-response theory [2,3,19,37]

( ) ( ) ( )[ ]ε ω ε
ε ε

ω ω µ

−
−

= − ℑ∞

∞o

p i t. 1 Φ        (35)

where p(ω) is an internal field factor [39, 37] and ℑ indicates a one-sided Fourier transform.  Thus, if we

know how the dipole moment correlation function Φµ(t) decays to zero with time then eqn. (35)  can be used
to obtain ε(ω).  For small-step rotational diffusion of molecules we have [37]
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Φµ(t) = exp - 2 Drt      (36)

i.e. an exponential decay with τµ = (2Dr)
-1 and where Dr is the rotational diffusion coefficient.  Setting p(ω) =

1 then eqn. (35) and eqn.(36) yield the single relaxation time equation, of the same form as eqn. (8) only τµ
replaces τRC.  Hence curves of [ε ', ε''] -vs- log frequency will take the form of fig. 2.   Thus simple rotational
diffusion of dipoles gives dielectric relaxation in the f-domain as a single relaxation time process and the
interpretation of such behaviour is understood physically in terms of Φµ(t).
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Figure 15(a).  Schematic illustration of the decay of the dipole moment correlation function
Φµ(t) with time in two stages;  by a fast β-process and a slower α-process.

Suppose that in a liquid on an amorphous solid that at short times local molecular motions lead to a
partial net reorientation of the dipole vectors and hence to a partial decay in Φµ(t) as shown schematically in

fig. 15(a).  At longer times microbrownian motions of molecules fully randomize the dipole orientations and Φ
µ(t) falls to zero, as shown in the figure.  Application of eqn. (35) leads to two relaxation processes in the
frequency domain as shown in fig. 15(b).  The short-time β-process transforms to give the high-frequency β-
process, the long-time α-process gives the low-frequency α-process.  Such multiple relaxations occur in glass-
forming liquids and amorphous polymers [4, 11, 21-32, see especially ref. 29].

The dielectric behaviour arising from different motional processes for the dipoles can be obtained by first
determining the form of Φµ(t) for the particular process and then using eqn. (35) to deduce ε(ω).  The
following models can be elucidated in this way :- Rotational diffusion by intermediate or large-angle jumps;
collision-interrupted rotational motions; barrier-hopping in site-systems of different symmetries; internal
motions of molecules [19, 37] and relaxation involving chemical relaxation between species [57].  If the
motions are simulated by computer, then Φµ(t) may be obtained numerically for insertion into eqn. (35).

Thus, the TCF approach to dielectric relaxation of dipoles in liquids and solids requires Φµ(t) to be known
analytically or numerically and this allows ε(ω) to be determined.  The TCF approach is also used for liquid
crystals and liquid crystal polymers [58-60].  In these cases there are, for nematic liquid crystals, two principal
permittivities ε(ω) and ε⊥(ω) measured parallel and perpendicular, respectively, to the liquid crystal director

axis n. [58-60].  The details of the derivations are too complex to be given here but it can be shown that ε(ω)

is related to two correlation functions Φµoo(t) and  Φµo1(t) and ε⊥(ω) similarly to further functions Φµ1o(t)
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and Φµ11(t) [59] where these functions relate to the motions of µ and µ⊥ (longitudinal and transverse

component dipole moments) of the molecules in the anisotropic potential of the liquid-crystalline state.  Thus
DRS measurements probe the anisotropic motions of the liquid crystalline groups as revealed in the four
relaxation modes Φµij(t) indicated above.
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Figure 15(b).  Schematic plots of ε' and ε'' -vs- log ω corresponding
to the two-stage decay function shown in fig. 15(a).

6.2. Applications of the TCF Approach
The theoretical basis of TCFs as they apply to dielectric relaxation, fluorescence depolarization, nuclear

magnetic resonance relaxation, quasi-elastic light scattering and neutron scattering and band-shapes in
infrared and Raman spectroscopies has been reviewed, see e.g. refs.19, 37 and 61.  The TCF theory for
dielectric relaxation in polymers was first given by Cook, Watts and Williams [56] and was reviewed by
Riande and Daiz [62].  The TCF theory for dielectric relaxation in barrier models possessing different
symmetries was given by Williams and Cook [63] and is applicable to rotator-phase molecular crystals [64].
The nature of α, β, αβ relaxations in amorphous polymers was rationalized by Williams and coworkers using a
TCF approach to partial and total relaxations (see e.g. refs. 21-23, 25-29 for reviews, especially ref. 29 for the
most recent account).  Long-range motions of polymer chains having a cumulative dipole moment, as in
polypropylene oxide and polyisobutylenes, give rise to dielectric relaxation, as demonstrated by Stockmayer
and Baur [65] and Adachi and coworkers [66, 67].  The TCF for dielectric relaxation in such polymers
including local motions and long-range motions was given by Adachi [66, 67] (see also Schönhals [68] for a
recent review).  The TCF theory for dielectric relaxation in liquid crystals and liquid crystal polymers has been
given by Attard [69] and Araki and coworkers [59], revealing anisotropy of ε(ω) and relaxation arising from
four active dielectric relaxation modes.  Williams [70] showed how dielectric relaxation could arise for systems
undergoing chemical relaxation, eg  A = B and A + B = C.  This theory was applied recently to dielectric
relaxation in thermoreversible polymer networks [71].

It is apparent from these works that if a particular model is proposed for dielectric relaxation in a
material, then the favoured procedure for elucidating ε(ω) is to form the dipole moment TCF and use eqn.
(35), thus avoiding solving equations of motion in the presence of a perturbing electric field.

6.3. ε(ω) and Alternative Representations of Relaxation Data
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It is evident that in the case of dielectric relaxation arising from motions of dipoles that experimental data
should be presented as ε(ω) since it is this quantity that relates directly to the molecular property Φµ(t) (see
eqn. (35)).  In such cases, M(ω), Z(ω) and σ(ω) are inappropriate forms since no simple direct relationship
exists between those quantities and the TCF, Φµ(t).  Consider M(ω).  We have seen in eqns. (8) and (10) that a
SRT process in ε(ω) converts formally into a SRT process in M(ω).  Thus, one might suppose that either form
would be equally informative about the underlying molecular processes.  However, ε(ω) will relate to τε which
will be closely related to τµ (see eqns. (35)) whereas τM = (ε∞/εo)τε = (Mo/M∞)τε.  Thus, τM relates not only

to the molecular quantity τµ but to the quantities ε∞ and εo which have no relation to the dynamical properties

of a material.  Therefore dipole relaxation behaviour is best expressed using ε(ω) and not M(ω).  In practice,
ionic conduction losses can obscure the loss arising from dipole relaxation and conversion to M"(ω) will
diminish the conduction contribution.  If εo and ε∞ are known then τµ can be calculated from τM.  We shall

discuss below the information obtainable from M(ω) and σ(ω) for systems exhibiting ionic conduction.
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β=0.5
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Figure 16.  Comparison of plots of (M', M'') -vs- log ω for a single relaxation
time function (β = 1) and a KWW function with β = 0.5.

7. PHENOMENOLOGICAL THEORIES OF CONDUCTION

7.1. Single relaxation time function and distributions of relaxation times
In Section 3.2., it was shown that Z(ω) and M(ω) exhibited relaxation behaviour for the parallel [Rp, Cp]

circuit despite the fact that this circuit does not exhibit transient (relaxation) behaviour in response to a step-
applied field.  Phenomenological theories of conduction need not use electrical equivalent circuits explicitly.
Electrical relaxation in ionic solids and liquids is attributed to the motions of ions and a description of the
electrical properties may be given in terms of electric-field relaxation, as described by Moynihan and
coworkers [12 - 15] who write

M(ω) = M∞(1 - ℑ[ - dφ(t)/dt])   =   M∞.iω ℑ[φ(t)]      (37)

where ℑ is a one-sided Fourier transform and φ(t) is the normalised relaxation function E(t)/E(O) for the
relaxation of the electric field in a sample under the constraint of a constant dielectric displacement.  As
emphasized by Nowick et al [72] if there were no dependence on the real permittivity ε' and real conductivity
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σ' on frequency for a material then M(ω) would be given by the single relaxation time equation and M"(ω)
would be a single 'Debye' peak with τRC = RpCp as we have seen for the parallel [Rp,Cp] circuit described in
Section 3.2 (see eqn. (15)).  This corresponds to φ(t) in eqn. (37) being given by a single exponential decay
function

φ(t) = exp - t/τM      (38)

which on insertion into eqn. (37) gives eqn. (15) with τM = RpCp.

log ω

 T increasing

log σ'

σo(T)

Figure 17.  Schematic plots of log σ' -vs- log ω for a system exhibiting ionic conduction.

Moynihan and coworkers [12-15] found that a good description of the electrical relaxation behaviour of
ionic solids and liquids was obtained using eqn. (37) together with a KWW function (eqn. 29) for φ(t).  As
shown schematically in fig. 16 the plots of M'(ω) and M"(ω) broaden and become asymmetric when β < 1.
Examples of recent experimental data that show such behaviour in M(ω) are 0.4 Ca(NO3)2-0.6 KNO3 (CKN)
melt [13], 33% LiCl in glycerol [13] and Na20.3SiO2 glass [72].  Extensive conduction data are reported for
these ionic solids and many other systems in refs. 30 and 31.  One example of master curves of M' and M" -vs-
logω for a CdF2-LiF-ARF3-PbF2 glass is shown by Hasz, Moynihan and Tick [13] which are well-fitted with β
= 0.77.  The same approach has been found to give an excellent representation of M(ω) data for a wide range
of ionic materials, including electrolytes and polymer-electrolytes.  According to Moynihan [15] and Greaves
and Ngai [73] the dc conductivity is given by

σo = εvβ/M∞Γ(1/β)      (39)

where Γ indicates the gamma function.  Thus, this approach represents the electrical behaviour of an ionically-
conducting material in terms of M(ω) and φ(t).  The KWW behaviour observed experimentally is considered to
arise from a distribution of processes having different τM  values, analogous with eqn. (26) above.  As
alternatives to the KWW function the Davidson-Cole empirical function, Cole-Cole or HN functions may also
be used to represent φ(t) (see Moynihan [15]).

As we have discussed earlier, the alternative representations of data as ε(ω), Y(ω), Z(ω) and σ(ω) may be
used for the electrical properties of ionically-conducting systems.  Experimental data for the real conductivity
σ'(ω) of amorphous materials follow that shown schematically in fig. 17 (see refs. 30 and 31 for numerous
examples).  At low frequencies, σ'(ω) is a constant at the d.c. value σo(T).  As temperature T is increased the
values of σo(T) increase.  For a fixed temperature, σ'(T) increases at high frequencies according to a power law
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σ' (ω) ~ ωp, where 0 < p ≤ 1 and p increases towards unity as T increases.  It is usual to express σ'(ω, T) as the
empirical relation [74, 72, 15]

σ'(ω) = σ'dc + Aωp      (40)

Moynihan [15] has shown how broad relaxation functions used in M(ω) in eqn. (37) lead to calculated
curves for σ'(ω) that have constant values σo at low frequencies and power-law behaviour at high frequencies.
The exponent in σ'(ω) ~ ωp is approximately equal to (1 - β) and (1 - γ) for the KWW and Davidson-Cole
relaxation functions, respectively [15], where β and γ are the respective spread parameters.

Moynihan [15] has given an excellent review of the analysis of electrical relaxation in ionic materials.
He shows the appearance of M(ω), σ(ω) and the complex resistivity ρ(ω) for representative systems and how
they may be analysed using the E-field relaxation function φ(t) and, further, how the KWW, Davidson-Cole
functions and eqn. (40) may be used consistently to fit the experimental data.  The origins of the non-
exponential forms for φ(t) that are used to fit data for ionic materials, such as Li2O - Al2O3-2SiO2 glass, are
not explained in this phenomenological theory.  The fact that such non-exponential time-functions (eg the
KWW stretched exponential function) can be expressed as the Hilbert transform of a distribution of relaxation
times (as in eqn. (26)) does not give any physical significance to that distribution.  One might consider the
generalization of the model [Rp, Cp] circuit (Section 3.2) to include an assembly of such elements, all in
parallel but of different [Rp, Cp] values, to try to generate a distribution in φ(t).  However, such an assembly is
formally equivalent to a single [R'p, C'p] circuit so will have only a single time constant R'pC'p.

In common with the behaviour described in Section 5.2, the electric-field relaxation times for ionic
materials also depend on temperature in accord with the Vogel-Fulcher or Arrhenius equations.  A description
of the behaviour of different materials is beyond the scope of this article, but many examples are shown in refs.
30 and 31.

8. MOLECULAR THEORIES OF IONIC CONDUCTION
The random motions of ions in liquids and amorphous solids in the absence of an applied field are

conveniently described using the time-dependent diffusion coefficient D(t) defined by the Einstein relation [75]

D(t) = <r2(t)>/2dt     (41)

where <r
2
(t)> is the mean squared displacement of an ion at time t with respect to its position at t = 0.  d is the

Euclidean dimension of the system (=3 for a liquid or amorphous solid).  The complex electrical conductivity
σ(ω) for ion-motions is related to D(t) by the Nernst-Einstein relation.

σ (ω) =  D(ω)pe
2
/kT      (42)

where e and k have their usual significance and p is a scaling factor [75]

( ) ( ) ( )D r t i t t dtω ω ω δδ ο=− −→
°

∞
∫2 2lim

exp      (43)

From eqns. (41-43) wee see that σ(ω) is related, by a Fourier-Laplace transform, to the mean-squared
displacement of the ions with time.  A full treatment needs to include the diffusion of both ions, each with their
own diffusion coefficient D(t).

For the special case where <r2(t)>/t is independent of time, D is a constant and insertion of eqn. (41) into
eqns. (42) and (43) gives σ'(ω) as a constant, independent of frequency.  As indicated above, practical systems
behave as shown in fig. 17 with σ'(ω) increasing with increasing frequency at high frequencies.  Thus an
explanation for this experimental behaviour is that D(t) depends strongly upon time, giving, at long times,
apparent normal diffusion with constant D (and hence constant σ'(ω) at low frequencies) and more
complicated behaviour at short times.  It is difficult to derive D(t) analytically for models for ion motion but
considerable progress has been made by numerical simulations for hopping motions of ions.  As one example
we quote the work of Funke [76] who has simulated the hopping motions of ions in a periodic lattice potential
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and a cage-effect potential due to Coulombic interactions.  They show the following.  As indicated
schematically in fig. 18, at short-times (regime I) the averaging of the ion-motions is over individual hops of
individual ions and in this range <r2(t)> increases linearly with time.  At intermediate times (regime II)
correlations between forward and backward hops, conditioned in the model leads to a lowering of the slope of
the plot of <r2(t)> -vs- time and gives, in the simulation of Funke, the power law relation <r2(t)> ∝ tp.  At

longer times (regime III) only successful hops contribute to <r2(t)> so the Einstein relation <r2(t)> ∝ t is
obeyed in this range.  Funke used eqns. (41) - (43) to calculate σ'(ω), which was found to take the form shown
in fig. 19.  Therefore the experimental data (shown schematically in fig. 17) are reproduced qualitatively by
this theoretical model and motions in regimes II and III now have a physical interpretation.  Regime I occurs at
high microwave frequencies (>1111 Hz) and has yet to be documented sufficiently for a range of systems in
order to check experimental data with this theoretical model.  We note that Funke [76] has compared the
results of his jump-diffusion model to those of Ngai based on the KWW equation (see ref. 76 for details).  It is
evident that a number of other models for the translational motions of ions could give rise to Einsteinean
diffusion at long times (regime III) and power-law behaviour at shorter times (regime II).

log t

log < r2(t)>

I II III

Figure 18.  Plot of log <r
2
(t)> -vs- log time for a model system exhibiting ionic conduction,

showing different behaviour in regions I, II and III. After Funke [76] (see text).

An alternative approach to eqns. (41) - (43) that connect σ(ω) to <r2(t)> is that involving the velocity
autocorrelation function for ion motions.  Forsyth et al. write [77].

σ (ω) = ( ) ( )1
3

0
kT V

j j t i t
.

. exp ω
°

∞

∫   dt     (44)

Where <j(0).j(t)> is the current-current time-correlation function for ion-motions.

j(t) = Σqivi      (45)

where qi  and vi are charge and velocity of ion i, the sum is taken over all ions in the volume V.  For a singly-
charged species, <j(0).j(t)> is related to the velocity-velocity time-correlation function <v(0). v(t)> for the
ensemble by

v(0). v(t)> = q2<j(0). j(t)>      (46)

Note that the current TCF and velocity TCF both include cross correlation terms between ions.  For a
single ion, the diffusion coefficient D is defined as

D = ( ) ( )1
3

0v v t dt.
°

∞

∫       (47)
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So D is a time-averaged quantity (a transport coefficient).  For Einsteinean diffusion we see that

D = <r2(t)>/6t = ( ) ( )1
3

0v v t dt.
°

∞

∫       (48)

Using a molecular dynamics simulation procedure, Forsyth et al [77] have calculated <r2(t)> -vs- time for
a model of an ionic mixture (concentrated NaCl solutions in H2O).

Thus eqns. (42) with (43) and eqn. (44) relate σ(ω) in different ways to the diffusional motions of ions in
a liquid or solid amorphous material.  Note that the total velocity correlation function for the ions could be
determined from data presented as σ(ω) -vs- log ω by Fourier inversion of eqn. (44).

It is apparent from the above that experimental electrical data for conducting systems including polymer
electrolytes [see Meyer, ref. 78 for a recent review] may be conveniently expressed as plots of M(ω) and σ(ω) -
vs- log ω, and that phenomenological theory is well-established for both representations.  It is clear that
molecular interpretations of σ(ω) exist in terms of the motions of ions as expressed by <r2(t)>, <v(0). v(t)> and
D(t).  It is not apparent how φ(t), which occurs in M(ω), may be related simply to these dynamic molecular
quantities since there is a reciprocal relation between M(ω) and σ(ω) (see eqn. (6) above).

log < σ' (ω) >

log ω

ΙΙΙΙΙΙ

Figure 19.  Plot of log σ'(ω) -vs- log ω for the model system exhibiting
ionic conduction (fig. 18).  After Funke [76] (see text).
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9. SUMMARY
The electrical/dielectric properties of materials can be presented in different ways, as the intensive

quantities of permittivity, electrical modulus, conductivity and resistivity, which emphasise differently the
polarization and conduction behaviour of a material.  The measured quantities Y(ω), Z(ω) may be re-
expresssed in terms of these intensive electrical/dielectric quantities, using equivalent lumped circuit theory.  It
is shown how model circuits lead to classical relaxation and conduction behaviour in the frequency domain.
Phenomenological descriptions of relaxation and conduction have been described and it is shown (i) how
M(ω), σ(ω) are related to time-dependent relaxation functions and (ii) how empirical relaxation functions may
be used to represent electrical/dielectric behaviour in the t-and f-domains.  Molecular theories of the
electrical/dielectric properties of systems exhibiting relaxation and conduction have been outlined briefly.  It is
shown that the reorientational motions of dipolar molecules are conveniently expressed in terms of the dipole
moment correlation function Φµ(t) and that ε(ω) is obtained via the Fourier transform of this time-function.
The translational motions of ionic species that lead to electrical conduction in a material are conveniently
expressed in terms of the mean squared displacement or the velocity correlation function of the ions and σ(ω)
is obtained via the Fourier transform of these time functions.  Thus dielectric relaxation due to dipole motions
and f-dependent conduction due to ion-motions in materials are understood in terms of molecular properties
and the dynamics of molecules and ions.

This account has attempted to make clear the essential theories that underpin the electrical/dielectric
properties of materials.  It has only summarized the different phenomenological and molecular theories, but
sufficient references have been given where the detailed derivations and mathematical analyses are described.

This article should help to answer the following questions:

• How should experimental data be presented (ε (ω), M(ω), σ(ω)) for molecular materials exhibiting (i)
relaxation and (ii) conduction behaviour?

• How do the observed properties (ε (ω), M(ω), σ(ω)) relate to molecular properties such as dipole moment,
ionic-charge, dynamics of rotational and translational motions of species for each system?

A number of aspects of relaxation and conduction have not been considered here.  The relaxation strength
∆ε = εo - ε∞ for dipolar relaxation behaviour is an equilibrium property of a system.  ∆ε is proportional to the

concentration of dipole species and to the mean-squared dipole moment <µ2> per molecules [1-4].  Thus ∆ε
depends on chemical structure and molecule-conformation as has been explained [1-4].

Owing to the introductory nature of this article, we have not described the coupling-scheme of Ngai and
coworkers [79] that is based on the KWW function or the mode-mode coupling approach of Götze and
coworkers [80, 81] which is based on a memory-function formalism.  Both approaches are widely-applied to
dielectric and electrical-conductivity relaxations in polymers and glass-forming liquids.  Williams [28, 82] has
given a critical account of the application of mode-mode coupling theory to dielectric α-relaxations in
polymers and glass-forming liquids.

Finally, we note the increasing interest in the use of microwaves in inorganic and organic synthesis,
where reactions are conveniently carried out in shorter times and with possibly different mechanisms when
compared with the normal thermal-preparation conditions.  This subject has been reviewed [83, 84] and it
appears that theoretical treatments of reactions in the presence of the heating generated by microwave
dielectric losses will be of some interest in the future.
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